If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5600x^2+140x-150=0
a = 5600; b = 140; c = -150;
Δ = b2-4ac
Δ = 1402-4·5600·(-150)
Δ = 3379600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3379600}=\sqrt{400*8449}=\sqrt{400}*\sqrt{8449}=20\sqrt{8449}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{8449}}{2*5600}=\frac{-140-20\sqrt{8449}}{11200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{8449}}{2*5600}=\frac{-140+20\sqrt{8449}}{11200} $
| 5=7+8x | | 7-3x=14x+40 | | 2(2x-4)+6=12 | | 1/3(6x-9)=15+6x | | 6(x-3)-6=-24 | | 3(2m-3)=-7m-15+3m+6 | | -20r=-19-19r | | x/15+1/3=4/3 | | 4n-8n=6 | | –3+2q=1 | | 28-18=x-9 | | 1/2(10x-6)=4x+10 | | 11=5x-2÷3 | | 7x=8x-50 | | 4.43−11.6n=–15.2−12.9n | | 51/8-n=13/8 | | Y=12+(3a+6) | | s/3-10=-15 | | -8(x+1)+2=-32 | | 4=t8 | | 8+9=x-2 | | 35+.8=-43-7x | | 10=6x^2-54x+1 | | 4(2x+4)+6(x-5)=70 | | 1=0.2x-09x-48 | | 5x+500=-15x+1000 | | 10x+6=12x-22 | | -6p+7=7-6p | | 21.50x+16x=37.50 | | 7r+26=3+8(6r+8 | | 4=r+14/7 | | 1+4b=-13-3b+5b |